
THE RIEMANN HYPOTHESIS FOR CURVES

ROHAN JOSHI

Abstract. In the 1940s, Weil proved an analogue of the Riemann hypothesis for curves
over finite fields. This result became the basis for the celebrated Weil conjectures, which
give a bound on the number of points of a smooth projective variety over a finite field. In
this paper I will give an exposition of the Weil conjectures for curves and sketch a proof of
the Riemann hypothesis for curves along the lines of Weil’s original proof using intersection
theory.
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1. Introduction

The Riemann zeta function is defined by the power series

(1) ζ(s) =
∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · ·

This series only converges for Re(s) > 1, but the function can be extended to the whole
complex plane via analytic continuation.

An important property that the Riemann zeta function satisfies is the functional equation.
The Riemann zeta function captures various properties of the distribution of prime numbers
in the location of its zeros.

One of the most important open questions about the Riemann zeta function is the Rie-
mann hypothesis. It is one of the oldest and most central open problems in number theory.
Proposed by Riemann in 1859, it states that
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Conjecture 1 (Riemann hypothesis). If ζ(s) = 0, s = −2,−4,−6 . . . or <(s) = 1
2
.

The Riemann hypothesis is equivalent to the following fairly concrete asymptotic statement
about the distribution of prime numbers:

(2) π(x) =

∫ x

2

dt

log t
+O(

√
x log x)

where π(x) is the number of prime numbers less than x. For more on the Riemann
hypothesis, its history and consequences, see [MS16].

In this paper we will explore an analogue of this mathematics in the context of function
fields, where the analogue of the Riemann hypothesis has proved more tractable. Indeed,
there is a “function field” Riemann zeta function, and it’s corresponding functional equation
was proved by the German school in the 1930’s. The analogue of the Riemann hypothesis
was proved in the 1940’s by Andre Weil. Weil’s proof used algebraic geometry over finite
fields, and it was this work that spurred him to rewrite the foundations of algebraic geometry
in his work Foundations of Algebraic Geometry [Wei62]. This work also inspired his highly
influential proposals, the Weil conjectures, which motivated much future work in algebraic
geometry and the French school’s further rewriting of the foundations with the theory of
schemes, as well as the theory of étale cohomology.

We will use the language of schemes for convenience but not in any serious way, since
almost the ideas here are classical and are due to Weil and his predecessors.

2. Riemann’s zeta function

To define the analogue of the Riemann zeta function in the function field context, we
first note that the Riemann zeta function can be equivalently defined in terms of an Euler
product. Indeed,

(3) ζ(s) =
∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · · =

∏
p

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=
∏
p

(
1

1− p−s

)
Definition 2. Let K be a global function field (i.e. a finite extension of Fp(t)), and let k be
the algebraic closure of Fp in K. Then define the Riemann zeta function of K

(4) ζ(K, s) =
∏
p

1

1− |OK/p|−s

where p runs over the nonzero prime ideals of the integral closure of OK of k[x] in K; we
also include factors for primes p of the integral closure k[x−1] that are not primes of OK .
Again this extends to the whole complex plane via analytic continuation.

The reason to include the “extra” primes of the integral closure of OK is motivated by
algebraic geometry. Indeed, since a global function field can also be defined as the function
field of a smooth projective algebraic curve over a finite field, it is natural to take the product
over the all closed points of the curve, including those “at infinity”. These in fact correspond
to archimedean valuations of OK , while the primes of OK correspond to non-archimedean
valuations.
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Thus it is natural to interpret this zeta function and the analogue of the Riemann hypoth-
esis in terms of algebraic curves. This also suggests generalizations to higher-dimensional
algebraic varieties; however that will not concern us right now.

In all that follows, C0 will be a smooth projective curve over a finite field Fq. Given a
global function field K, there is up to isomorphism a unique curve C0 whose function field
is K, where k = Fq. On the other hand, given C0, we obtain K as its function field.

Definition 3.

(5) ζ(C0, s) :=
∏

p∈C0(cl)

1

1− |k(p)|−s

where C0(cl) is the set of closed points of C0 and k(p) is the residue field of p.

Thus ζ(K, s) = ζ(C0, s) if K is the function field of C0.
The main theorem we will prove in this paper is the following (note the absence of “trivial

zeroes”):

Theorem 4 (Analogue of Riemann hypothesis). If ζ(C0, s) = 0, <(s) = 1
2
.

3. Rational Points of Curves over Finite Fields

Remarkably, the previous theorem can actually be interpreted as a statement about ratio-
nal points. It gives a bound on the number of Fqr points of the curve C0. For convenience
(and respect to convention) we will introduce another “zeta function” Z which is simply a
change of variable:

Definition 5.

(6) Z(C, T ) =
∏
p∈Ccl

1

1− T deg p

where deg p := [k(p) : Fq] is the degree of the residue field over the base field Fq. Note that
Z(C, t) = ζ(C, q−s).

Furthermore, logZ(C, T ) = −
∑

p log(1− T deg p). Recall the power series for log(1− x),

(7) log(1− x) = −
∞∑
k=1

ak

k
.

Thus

(8) logZ(C, T ) =
∑
p

∞∑
k=0

(T deg p)k

k
=
∑
p

∞∑
k=0

T (deg p)k

(deg p)k
(deg p)

Now, we can reorganize this sum as follows:

(9)
∞∑
r=1

∑
k∈N,p(deg p)k=r

T r

r
(deg p) =

∞∑
n=1

T r

r

∑
(deg p)k=r

deg p.

However, note that
∑

(deg p)k=r deg p =
∑

deg p|r deg p. This sum counts each closed point p

with multiplicity deg p, if deg p divides r. But deg p = [k(p) : Fq]; since all extensions of finite
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fields are separable, this degree equals the separability degree of the extension k(x)/Fq, which

is the cardinality of the set of homomorphisms k(x)→ Fq over Fq. All such homomorphisms
will have image which lies in Fqr , so we are counting homomorphisms of the residue field
into Fqr over Fq. Crucially, this is equal to the number of morphisms SpecFq → C which
send the point of SpecFq to the closed point p, by [Har77, II Exercise 2.7]. Thus

(10)
∑

(deg p)k=n

deg p =
∑

deg p|n

deg p = |C0(Fqr)|.

Let Nr := |C0(Fqr)|. We therefore have

(11) logZ(C, T ) =
∞∑
r=1

Nr
T r

r
.

So,

(12) Z(C, T ) = exp

(
∞∑
r=1

Nr
T r

r

)
.

Thus Z(C, T ) is a sort of generating function for the numbers Nr, which count the number
of points C0 has over all finite extensions of the base field Fq. Note that this is very concrete:
C0 is could be defined by a single homogeneous polynomial in three variables, and so this
counts how many solutions this polynomial has when the variables take values in finite fields.

We will later see how the Riemann hypothesis implies a bound on Nr called the Hasse-Weil
inequality.

4. Rationality and the Functional Equation

Before we get to the Hasse-Weil inequality and the analogue of the Riemann hypothesis,
we will first prove that Z(C0, T ) is in fact a rational function of T , and that it satisfies a
functional equation, albeit one quite different looking from the one the classical Riemann
zeta function satisfies.

To do this, we will use a little of the theory of divisors. Let C0 be the curve over Fq.
Recall that a Weil divisor on a curve (cf. [Har77, II.6] for general Weil divisors) is a finite
integer combination of closed points of C0. The difference in the case of curves over non-
algebraically closed fields is in the degree map: the degree of a divisor D =

∑
nipi is∑

ni(deg pi) as opposed to
∑
ni (for a closed point p, deg p = [k(p) : Fq]). Let dr be the

cardinality of the set of effective divisors of degree n.
We will let Div(C0) be the group of divisors on C0, and Div+(C0) the set of effective

divisors (those with nonnegative coefficients). Pic(C0) is the group of divisors up to linear
equivalence. Let Divn(C0) be the set of divisors of degree n, and Picn(C0) the set of linear
equivalence classes of divisors of degree n.

This is useful to us for the following reason. First, we will reformulate the zeta function
Z to look more like the power series for the original zeta function. Recall that

(13) Z(C0, T ) =
∏

p∈C0(cl)

1

1− T deg p
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Thus,

(14) Z(C0, T ) =
∏

p∈C0(cl)

∞∑
n=1

T (deg p)n

The coefficients of the T n term of this convolution will be the number of sequences {npi}
of nonnegative integers such that

∏
i T

(deg pi)(npi ) = T n, or in other words
∑

i npi(deg pi) = n.
This is exactly the number of effective divisors on C0 of degree n! Thus

(15) Z(C0, T ) =
∞∑
n=0

dnT
n.

If D is a divisor, |D| is the set of all effective divisors linearly equivalent to D; as in the case
of curves over an algebraically closed field [Har77, IV.1] these divisors are in bijection with
elements of the quotient set H0(C0, D)−{0}/F×q . Thus the size of |D| is (ql(D)− 1)/(q− 1).
Say the degree of D is n. So,

(16) dn =
∑

D∈Picn(X0)

ql(D) − 1

q − 1

The main tool we need is the Riemann-Roch theorem.

Theorem 6 (Riemann-Roch). Let D be a divisor of degree n and let K be the canonical
divisor on a curve of genus g. Then

(17) l(D)− l(K −D) = n+ 1− g.

Proof. See [Har77, IV.1.3] �

Corollary 7. If n > 2g − 2, l(D) = n+ 1− g.

Proof. If n > 2g − 2, K −D is a divisor of negative degree, so l(K −D) = 0. �

Corollary 8.

(18) dn = |Picn(C0)|q
n+1−g − 1

q − 1

for r > 2g − 2.

Proof. Combine 6 and 16. �

Theorem 9 (Rationality). Z(C0, T ) is a rational function of T . In particular, there exists
a polynomial P (T ) such that

(19) Z(C0, T ) =
P (T )

(1− T )(1− qT )
.
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Proof.

(20) Z(C0, T ) =
∞∑
n=1

dnT
n =

2g−2∑
n=1

dnT
n +

∑
n>2g−2

|Picn(C0)|q
n+1−g − 1

q − 1
T n

=

2g−2∑
n=1

dnT
n +
|Picn(C0)|
q − 1

∑
n>2g−2

(qn+1−g − 1)T n

=

2g−2∑
n=1

dnT
n +
|Picn(C0)|
q − 1

T 2g−1

(
qg

1− qT
− 1

1− T

)
.

This can be written as fraction whose numerator is a polynomial and whose denominator is
(1− T )(1− qT ). �

Lemma 10. dn − qn+1−gd2g−2−n = |Pic0(C0)| qn+1−g−1
q−1

Proof. Recall that Picn(C0) is the fiber of the surjective map deg : Pic(C0) → Z over

n, and therefore |Pic0(C0)| = |Picn(C0)|. Also, there is an explicit bijection Picn(C0)
∼=−→

Pic2g−2−n(C0) provided by D 7→ K −D. Thus

(21) dn − qn+1−gd2g−2−n =
∑

D∈Picn(C0)

ql(D) − 1

q − 1
− qn+1−g

∑
D′∈Pic2g−2−n(C0)

ql(D
′) − 1

q − 1

=
∑

D∈Picn(C0)

(
ql(D) − 1

q − 1
− qn+1−g+l(K−D) − qn+1−g

q − 1

)

= |Picn(C0)|q
n+1−g − 1

q − 1
= |Pic0(C0)|q

n+1−g − 1

q − 1
.

�

Theorem 11 (Functional Equation). Z(C0,
1
qT

) = q1−gT 2−2gZ(C0, T )

Proof. Note that dn = 0 for n < 0. First,

(22) Z(C0,
1

qT
) =

∑
n∈Z

dnq
−nT−n =

∑
n∈Z

d−nq
nT n

(swapping n 7→ −n). Furthermore we have

(23) qg−1T 2g−2Z(C0,
1

qT
) =

∑
n∈Z

qn+1−gd2g−2−nT
n

via n 7→ n+ 2− 2g. Thus

(24) Z(C0, T )− qg−1T 2g−2Z(C0,
1

qT )
=
|Pic0(C0)|
q − 1

∑
n∈Z

(qn+1−g − 1)T n

Finally we must inspect the series
∑

n∈Z(qn+1−g − 1)T n = q1−g∑
n∈Z(qT )n −

∑
n∈Z T

n. The
left series is annihilated by 1−T and the right series is annihilated by 1−T . Thus Z(C0, T )−
qg−1T 2g−2Z(C0,

1
qT )

= 0 at all but two points; since Z is continuous and defined on the whole

complex plane, it is identically zero: so Z(C0,
1
qT

) = q1−gT 2−2gZ(C0, T ). �
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Corollary 12. There exist constants αi, . . . α2g such that P (T ) = (1− α1T ) · · · (1− α2gT ),
where αiα2g−i = q.

Proof. The functional equation implies that P ( 1
qT

) = q−gT−2gP (T ). Note that this implies

that P is of degree (at most) 2g. Let P (T ) = (1− αiT ) · · · (1− α2gT ). Then the functional
equation implies, up to rearrangement, that the factors qT 2−αiT are the same as the factors
1− αiT . Thus, rearranging if necessary, we must have qT 2 − αiT = 0 ⇐⇒ 1− α2g−iT = 0.
So 1

α2g−i
= αi

g
, so αiα2g−i = q. �

5. Statement of Riemann hypothesis and the Hasse-Weil Inequality

Recall that we have established that

(25) Z(C0, T ) =
(1− α1T ) · · · (1− α2gT )

(1− T )(1− qT )
.

Thus the zeros Z(C0, T ) are 1
α1
, . . . 1

α2g
. Thus to show that the roots of Z have absolute

value q−
1
2 , it suffices to show that |αi| =

√
q.

Furthermore, we have that αiα2g−i = q. So notice that the Riemann hypothesis will follow
from simply the inequality |αi| ≤

√
q.

We will prove the Riemann hypothesis via the Hasse-Weil inequality, which is an
inequality that puts an explicit bound on Nr. The Hasse-Weil inequality states that

(26) |Nr − (1 + qr)| ≤ 2g
√
qr

which is actually a pretty good bound. Why does the Hasse-Weil inequality imply the
Riemann hypothesis? Well, if we take the logarithm of Z(C, T ) and use the power series for
log(1− x), regrouping terms gives us

(27) Nr = 1 + qr −
2g∑
i=1

αri =⇒ |αr1 + · · ·αr2g| ≤ 2g
√
qr

In other words,

(28)

∣∣∣∣( α1√
q

)r
+ · · ·+

(
α1√
q

)r∣∣∣∣
is bounded.

Letting r → ∞, we have max
∣∣∣ αi√

q

∣∣∣ ≤ 1, so αi ≤
√
q for all i as desired. This works, with

some care, even if the αi are not distinct.

6. Example

Example 13 (Projective line). Let C0 = P1
Fq

. Then clearly Nr = qr + 1. Thus the zeta
function is
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(29) Z(C0, T ) = exp

(
∞∑
r=1

(qr + 1)T r

r

)
= exp

(
∞∑
r=1

T r

r

)
exp

(
∞∑
r=1

(qT )r

r

)
= exp(− log(1− T )) exp(− log(1− qT )) =

1

(1− T )(1− qT )
.

This is indeed what rationality predicts in the genus 0 case. To verify the functional
equation, note that

(30) Z(C0,
1

qT
) =

1

(1− 1
qT

)(1− 1
T

)
=

qT 2

(qT − 1)(T − 1)
= qT 2Z(C0, T ),

as desired. Finally, the Riemann hypothesis holds trivially since there are no values of α.
Note that in the genus 0 case, the Hasse-Weil bound reduces to an equality Nr = qr + 1; the
projective line satisfies this.

7. Proof of the Hasse-Weil Inequality

Now, we will prove the Hasse-Weil inequality using intersection theory. Let C be the base
extension of C0 to the algebraic closure of Fq i.e. C = C0 ×SpecFq SpecFq. So C is a curve
over an algebraically closed field, and we can think of it essentially as a classical algebraic
variety.

Then there is the Frobenius map Frobr : C → C. If we embed C into projective space,
then Frobr sends [x0 : · · · : xn] 7→ [xq

r

0 : · · · : xqrn ]. We can interpret Nr as the size of the set
of fixed points of Frobr. Our plan then to use inequalities from intersection theory to bound
the intersection of ΓFrobr and ∆ (the diagonal) in C × C.

First, let us set up the intersection theory we need. This material is from Chapter V.1 of
Hartshorne, on surfaces.

Theorem 14 (Intersection pairing on a surface). Let X be a surface. There exists a sym-
metric bilinear pairing PicX×PicX → Z (where the product of divisors C and D is denoted
C.D) such that if C, D are smooth curves intersecting transversely, then C.D = |C ∩D|.

Theorem 15 (Hodge index). Let H be an ample divisor on X and D a nonzero divisor,
with D.H = 0. Then D2 ≤ 0. (D2 denotes D.D)

Now let us begin with some general set up. Let C1 and C2 be two curves, and let X =
C1 × C2. Identify C1 with C1 × ∗ and C2 with ∗ × C2. Notice that C1.C1 = C2.C2 = 0 and
C1.C2 = 1. Thus (C1 + C2)2 = 2 ≥ 0.

Let D be a divisor on X. Let d1 = D.C1 and d2 = D.C2;

Proposition 16 (Castelnuovo-Severi inequality). def(D) := 2d1d2 −D2 ≥ 0

Proof. (D− d2C1 − d1C2).(C1 +C2) = 0 (expand it out). The Hodge index theorem implies
then that (D − d2C1 − d1C2)2 ≤ 0. Expanding this out yields D2 ≤ 2d1d2. �

Thus we may define def(D) := 2d1d2 −D2 ≥ 0.

Proposition 17. Let D and D′ be divisors. Then |D.D′ − d1d
′
2 − d2d

′
1| ≤

√
def(D)def(D′).
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Proof. Expand out def(mD+nD′) ≥ 0, for m,n ∈ Z. We can let m
n

become arbitrarily close

to
√

def(D′)
def(D)

, yielding the inequality. �

Lemma 18. Consider a map f : C1 → C2. If Γf is the graph of f on C1 × C2, then
def(Γf ) = 2g2deg(f) (where g2 is the genus of C2).

Proof. The adjunction formula ([Har77, V.1.5] states that KΓf
= (KV + Γf ).Γf . Since

KV = KC1 × C2 + C1 ×KC2 , we have that

(31) 2g1 − 2 = (Γf )
2 + (2g1 − 2)(1) + (2g2 − 2) deg f.

Thus, def(Γf ) = 2g2 deg f . �

Now we have what we need: we will do intersection theory on C ×C. The Frobenius map
f = Frobr : C → C is a map of degree qr, so def(Γf ) = 2gqr. We might as well think of ∆
as the graph of the identity map, so def(∆) = 2g. Finally, d′2 = d2 = d′1 = 1 and d1 = qr.
Plugging it into the inequality, we get

(32) |Γf .∆− qr − 1| ≤
√

(2gqr)(2g)

yielding the Hasse-Weil inequality

(33) |Nr − (1 + qr)| ≤ 2g
√
qr.

This proves the Riemann hypothesis for curves over finite fields.

8. The Weil conjectures

After Weil proved the Hasse-Weil inequality and thus the Riemann hypothesis, he proposed
what are now called the Weil conjectures. The Weil conjectures basically generalized the
story for curves to higher-dimensional algebraic varieties. Furthermore, they establish an
even stronger link with topology.

Let V0 be a smooth projective variety of dimension n over a finite field Fq. Let Nr =
|V0(Fqr)|. Define the local zeta function

(34) Z(V0, T ) = exp

(
∞∑
r=1

Nr
T r

r

)
Proposition 19 (Weil conjectures). There are four parts:

(1) Rationality: Z(V0, T ) is a rational function of T . More precisely, there exist poly-
nomials P0 . . . P2n such that

(35) Z(V0, T ) =
P1(T ) · · ·P2n−1(T )

P0(T )P2(T ) · · ·P2n(T )

Also, P0(T ) = 1−T , P2n(T ) = 1−qnT , and for 1 ≤ i ≤ 2n−1, Pi(T ) =
∏

j(1−αijT )
for some numbers αij.

(2) Functional Equation

(36) Z

(
V0,

1

qnT

)
= ±qnE/2TEZ(V0, T )

where E is the top Chern class of the tangent bundle of V .
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(3) Riemann hypothesis |αij| = qi/2 for all 1 ≤ i ≤ 2i− 1 and all j.
(4) Betti numbers If V0 was obtained from an arithmetic variety over a number ring via

reduction to a prime, then one can consider the original variety before reduction, and
by embedding the ring into C, consider it over the complex numbers. The degree of Pi
is ith Betti number of the associated complex variety, considered as a complex-analytic
space.

9. Further Reading

For information about the classical Riemann hypothesis, see [MS16]. The proofs of ratio-
nality and the functional equation are drawn from a set of course notes [ET11]. The proof
of the Riemann hypothesis and much else is drawn from a highly recommended expository
paper of Milne [Mil16]. We encourage the reader to read this paper to learn about the Weil
conjectures and all sorts of future developments inspired by the mathematics described in
this paper. For the theory of algebraic surfaces, as well as intersection theory, see [Har77].
A fast run down of some of the contents of this paper may be found in the blog post [Hil17].
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