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Abstract. In this paper, we investigate derived intersections in affine schemes. In particular, we study
when derived intersections in quasi-smooth affine schemes are quasi-isomorphic to symmetric algebras of

chain complexes, and prove two cases when this is always possible. We also explore the connection between

derived intersections and the cotangent complex.
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1. Introduction

In what follows, all rings will be commutative with 1. Given a ring R and ideals I and J , X = Spec R/I
and Y = Spec R/J are closed subschemes of S = Spec R. Their scheme-theoretic intersection is the fiber
product in the category of schemes X×SY = Spec(R/I⊗RR/J). The scheme-theoretic intersection captures
intersection multiplicity information, while the set-theoretic intersection does not. For example, if we take
the intersection of the parabola y−x2 = 0 with the line y = 0, we get Spec k[x]/x2 which is a ring of length
two. This corresponds to the fact that in some sense the intersection is of multiplicity 2, since the parabola
is tangent to the line.

However, in certain contexts, the scheme-theoretic intersection does not contain enough information to
determine the correct intersection multiplicity; this can occur when the intersection has the “wrong dimen-
sion.” Instead of an ordinary tensor product R/I ⊗R R/J we need to consider the information contained
in the derived tensor product R/I ⊗LR R/J . The derived tensor product is not just a ring but a differential-
graded ring ; that is, it also has the structure of a chain complex. In general, [Ser00] defined the intersection
multiplicity at a point p to be the Euler characteristic of the derived tensor product of the local rings at p,
which can be computed as an alternating sum of lengths of Tor groups:
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χ(OX,p ⊗LOS,p
OY,p) =

∞∑
i=0

(−1)il(Tor(OX,p,OY,p).

In the setting of derived algebraic geometry, we define new kinds of geometric objects to capture infor-
mation about this sort of situation. Rather than considering the basic objects of algebraic geometry to
be schemes, i.e. locally built out of the spectra of commutative rings, we generalize to differential graded
schemes, which are locally built out of the “derived spectra” of differential graded rings. For more on the
motivation for derived algebraic geometry beyond just the context of intersection theory, see the introduction
to [Lur18].

In this paper, we collect and prove some results on derived intersections of affine schemes. Specifically,
we investigate the question of when the derived intersection can be written as a symmetric algebra. Our
questions are motivated by results by Arinkin, Căldăraru, and Hablicsek [ACH14], who studied formality
of derived intersections. However, they treat the global case and only consider smooth schemes, whereas
we only consider the local case, but also consider singular schemes. We also draw inspiration from a paper
by Arinkin and Căldăraru [AC12], who investigated when a derived self-intersection of a closed subscheme
inside a smooth scheme is a fibration over the subscheme. In general, there is a morphism of spaces from
the underived intersection to the derived intersection, and formality refers to cases where the correspond-
ing ring homomorphism makes the structure sheaf of the derived intersection a symmetric algebra (in the
differential-graded sense, as we will describe in the next section) over the structure sheaf of the underived
intersection. This should remind the reader of algebro-geometric vector bundles, and we can describe the
derived intersection as a “shifted vector bundle” over the underived intersection.

Furthermore, our work is motivated by actions of the multiplicative group Gm. We have that a Gm-
action on an affine scheme X is equivalent to a grading on X. Moreover, we say that a Gm-action on X
is contracting if the grading induced on X is in degrees ≤ 0 (using cohomological conventions). Thus, if
a derived intersection can be written non-trivially as a symmetric algebra, then there exists a contracting
Gm-action on the derived intersection, since the symmetric algebra is graded.

The bulk of this paper is devoted to exposition of the basic notions involved in the story. We begin by
presenting a gentle introduction to differential graded algebras, and then describe Koszul-Tate resolutions.
These allow us to resolve an algebra by a differential graded algebra, and are our main computational tool.
We then compute many examples of derived intersections. Everything we do will be local (affine) and thus
completely algebraic.

After this, we take a detour and provide a brief exposition of Kähler differentials and the cotangent
complex. We then present some of our results on derived intersections in quasi-smooth schemes. The main
results are the following: let R be a regular local ring over base field k, and let A, I, and J be ideals of
R generated by regular sequences such that A ⊂ I, A ⊂ J , and R/I and R/J are regular local rings. Let
R = R/A, I = I/A, and J = J/A. Then the following theorems hold:

Theorem 1. If I ⊂ J , then R/I ⊗L
R
R/J ∼= SymR/J LY/k where Y = Spec R/J .

Theorem 2. Let A = (a1, . . . ar) and I = (f1, . . . , fn). If A ⊂ IJ , then R/I ⊗L
R
R/J ∼= SymR̃ R̃

r[2], where

R̃ is the dg algebra R/J [e1, . . . , en] with |ei| = −1 and with differential d(ei) = fi.

Subsequently, we present some computational results that explicitly describe the cohomology of certain
derived self-intersections. Finally, given a quasi-smooth affine scheme X and an automorphism f of X, we
state a question about the derived intersection of the diagonal of X with the graph of f .

2. Preliminaries on dg algebras and dg modules

Throughout this paper, k will be a field of characteristic zero. As budding algebraic geometers, we will
adopt cohomological indexing conventions.

Definition 3. A differential graded algebra (dg algebra) over k is a nonpositively graded cochain complex
A• of R-modules endowed with R-bilinear maps An ×Am → An+m, (a, b) 7→ ab such that

dn+m(ab) = dn(a)b+ (−1)nadm(b)

and such that
⊕
An becomes an associative and unital R-algebra. If a ∈ An, we say |a| = n. We will denote

the differential as simply d.



DERIVED INTERSECTIONS IN QUASI-SMOOTH AFFINE SCHEMES 3

We often just write (A, d) for A• and think of this as an associative unital R-algebra endowed with a
Z≤0-grading and an R-linear operator d whose square is zero and which satisfies the Leibniz rule as explained
above. In this case we often say “let (A, d) be a differential graded algebra”.

Definition 4. A homomorphism of dg algebras f : (A, d)→ (B, d) is an algebra map f : A→ B compatible
with the gradings and the differential d.

A quasi-isomorphism of dg algebras is a homomorphism of dg algebras that induces isomorphisms on all
cohomology groups.

Definition 5. A differential graded algebra (A, d) is skew-commutative if ab = (−1)|a||b|ba. for homogeneous
elements a and b. Note that since k is of characteristic zero, this implies a2 = 0 when |a| is odd.

Remark 6. Henceforth we shall use “dg algebra” to mean skew-commutative differential graded algebra.
These are the basic objects of study in this paper. Skew-commutative dg algebras are often called “cdgas”
in the literature.

It is possible to describe dg algebras using generators and relations, just as with ordinary algebras.
However, one must watch out for the skew-commutativity in the sign rule. In the first few following examples,
the differential will be trivial, to focus on the consequences of grading and skew-commutativity.

Example 7. We will describe a “polynomial dg algebra” in one variable, which is homogenous in degree 1,
with trivial differential. Let A = k[e1], |e1| = −1, and d(e1) = 0. Thus An is generated as a vector space by
en1 . However, (e1)2 = 0, so A2 = A3 = . . . are trivial. Thus A looks like

· · · → 0→ k(e1)→ k

where the differentials are zero.

Example 8. Similarly, let A = k[e1, . . . en], |ei| = −1, d(ei) = 0. The sign rule dictates that eiej = −ejei
when i 6= j and e2

i = 0. Thus A is an exterior algebra on the generators e1, . . . en, and looks like

· · · → 0→ 0→ ∧n(ke1 ⊕ · · · ⊕ ken)→ · · · → ∧2(ke1 ⊕ · · · ⊕ ken)→ ke1 ⊕ · · · ⊕ ken → k

where the differentials are again zero. The complex is entirely concentrated in degrees zero through −n.

In the world of differential graded algebras, skew-commutativity substitutes for commutativity. Although
we write A as k[e1, . . . en], A is in fact an exterior algebra, which is anti-commutative! However, we will use
the terms “polynomial algebra” and “symmetric algebra” to describe such skew-commutative algebras. By
analogy with symmetric algebras in classical commutative algebra, we can alternatively describe the algebra
of the previous example as Symk k

n[1]. Here kn[1] refers to the complex which is kn in degree negative one
and zero everywhere else.

Example 9. We will now consider polynomial variables in even degree. Let A = k[e1, . . . en], |ei| = −2,
d(ei) = 0. The sign rule dictates that eiej = ejei, so what we have is a commutative algebra. Thus A looks
like

· · · → Symn+1(ke1 ⊕ · · · ⊕ ken)→ 0→ Symn(ke1 ⊕ · · · ⊕ ken)→ · · · → 0→ ke1 ⊕ · · · ⊕ ken → 0→ k

where the differentials are again zero. Notice that the complex is concentrated in even degrees. Also notice
that unlike the previous example, the complex is not bounded.

Remark 10. Again, we can describe the previous algebra as Symk k
n[2]. This algebra behaves much more

like an honest symmetric algebra; it is actually commutative. As the previous two examples indicate, dg
algebras simultaneously generalize classical symmetric algebras and exterior algebras.

Example 11. We will now consider an example where the differential is nontrivial. Let A = k[e1, ε1],
|e1| = −1, |ε1| = −2, d(ei) = 0, d(ε1) = e1. Thus e2

1 = 0, and εn1 e1 = (−1)2×1e1ε
n
1 = e1ε

n
1 . So there is only

one generator of each degree, ε
i/2
1 if i is even and ε(i−1)/2e1 is i is odd.

Now, we claim d(εn1 ) = nεn−1
1 e1. We can prove this inductively: it is true for n = 1, and d(εn1 ) =

d(εn−1
1 )ε1+εn−1

1 d(ε1) = (n−1)εn−2
1 ε1+εn−1

1 e1 = nεn−1
1 e1. Next, d(εnne1) = d(εnn)e1+εnnd(e1) = nεn−1

1 e2
1 = 0.

So our complex looks like

. . .
3−→ kε2

1e1
0−→ kε2

1
2−→ kε1e1

0−→ kε1
1−→ ke1

0−→ 0.
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Definition 12. Let R be a ring. Let (A, d), (B, d) be differential graded algebras over R. The tensor product
of A and B is the algebra A⊗R B with multiplication defined by

(a⊗ b)(a′ ⊗ b′) = (−1)|a
′||b|aa′ ⊗ bb′

endowed with differential d defined by the rule d(a⊗ b) = d(a)⊗ b+ (−1)|a|a⊗ d(b) where m = deg(a).

Remark 13. Observe that it is easy to take tensor products of polynomial dg algebras. For example, k[e1]⊗
k[e2] ∼= k[e1, e2], and the differential can be computed from the rule.

Now we will discuss dg modules.

Definition 14. Let (A, d) be a (not necessarily skew-commutative) differential graded algebra over k. A
(right) differential graded module M over A is a right A-module M which has a grading M =

⊕
Mn and a

differential d such that MnAm ⊂Mn+m, such that d(Mn) ⊂Mn+1, and such that

d(ma) = d(m)a+ (−1)nmd(a)

for a ∈ A and m ∈Mn.

Definition 15. A homomorphism of differential graded modules f : M → N is an A-module map compatible
with gradings and differentials. The category of (right) differential graded A-modules is denoted Mod(A,d).

We can similarly define left differential graded A-modules and differential graded A-bimodules. When A is
strictly commutative, they are the same we just call them differential graded A-modules.

Definition 16. Let (A, d) be a differential graded algebra. Let M be a differential graded A-module. For
any k ∈ Z we define the k-shifted module M [k] as follows:

(1) M [k] = M as A-modules ,
(2) M [k]n = Mn+k,
(3) dM [k] = (−1)kdM .

For a morphism f : M → N of differential graded A-modules we let f [k] : M [k] → N [k] be the map equal
to f on underlying A-modules. This defines a functor [k] : Mod(A,d) → Mod(A,d).

For more details on dg algebras and dg modules, see [Man] or the Stacks Project [Sta18, Tag 061U].

3. Application to Koszul and Tate resolutions

The formalism of dg algebras allows us to give a fairly elegant treatment of the Koszul complex. The
Koszul complex is a homological tool that allows to study regular sequences.

Definition 17. A sequence of elements f1, . . . fn ∈ R is a regular sequence if (f1, . . . fn) 6= R and fi is a
nonzerodivisor in R/(f1, . . . fi−1), for all i. In this case I = (f1, . . . fn) is called a regular ideal.

Geometrically, regular sequences correspond to (local) complete intersections. The Koszul complex is
useful because of the following theorem:

Theorem 18. If f1, . . . fn is a regular sequence, then Hi(K(f1, . . . fn)) = 0 for i > 0.

Proof. See [Eis95, Corollary 17.5]. 1 �

We may define the Koszul complex as follows:

Definition 19. The Koszul complex K(R; f1, . . . fn) for a sequence of elements fi ∈ R is the polynomial dg
algebra R[e1, . . . en], where |ei| = −1 and d(ei) = fi for all i.

Theorem 20. If f1, . . . fn is a regular sequence, then the Koszul complex is a resolution of R/(f1, . . . fn)

Proof. Clearly H0(K(R; f1, . . . fn)) = R/(f1, . . . fn). Exactness everywhere else follows from Theorem 18.
�

1Eisenbud uses the dual Koszul complex; one must translate Hk(K(∗)) ∼= Hn−k(K(∗)).

https://stacks.math.columbia.edu/tag/061U
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In the above, we resolved an algebra by a polynomial dg algebra. In general, it is possible to resolve any
quotient algebra R/I in such a way. The way this works is, first, add polynomial variables in degree one,
which are sent by the differential to generators of I. Then, we add variables in degree two, which are sent to
nontrivial cycles in degree one. Then we add variables in degree three, which are sent to nontrivial cycles in
degree two. And so on. Such a resolution is called a Koszul-Tate resolution, and the concept was originally
introduced in a 1957 paper by Tate [Tat57]. We shall heavily make use the special case with only degree one
and degree two polynomial variables, as follows:

Theorem 21. Let A = (a1, . . . ar) and I = (f1, . . . fn) be regular ideals such that A ⊂ I. Write aj =∑n
i=1 cjifi where cji ∈ R. Let R = R/A and I = I/A. Then the polynomial dg algebra

R[e1, . . . en, ε1, . . . εr],

where |ei| = −1, |εj | = −2, d(ei) = fi and d(εj) =
∑n
i=1 cjiei is a resolution of R/I as an R-module.

Proof. [Tat57, Theorem 4]. �

4. Computations of derived intersections in quasi-smooth affine schemes

In this section, we present some examples of derived intersections. We begin by introducing the general
setting that will be used throughout this paper. We will focus on quasi-smooth affine schemes.

Definition 22. A dg algebra A is quasi-smooth if for every prime ideal p of A, we have that Ap is quasi-
isomorphic (as a chain complex) to the Koszul complex K(B; f1, . . . , fr) for some smooth classical ring
B.

For affine schemes, being quasi-smooth is equivalent to being a locally complete intersection. An affine
scheme is a locally complete intersection if it is the spectrum of a local complete intersection ring, that is,
a Noetherian local ring whose completion is the quotient of a regular local ring by an ideal generated by a
regular sequence.

Unless otherwise specified, our setting for computing derived intersections is as follows: S will be a quasi-
smooth affine scheme, while X and Y will be closed subschemes of X. We want to compute the derived
intersection

W = X ×LS Y.
From the algebraic point of view, let us consider the following setup. R is a regular local ring over a field

k, and A, I and J are ideals of R generated by regular sequences such that A ⊂ I and A ⊂ J . Furthermore,
we require R/I and R/J to be regular local rings. Let R = R/A, I = I/A, and J = J/A. Then we can set
X = Spec R/I, Y = Spec R/J , and S = Spec R. Note that R is a local complete intersection ring. We are
interested in the derived tensor product of quotient rings over R

R/I ⊗L
R
R/J.

We will use the Tate resolution stated in Theorem 21 to calculate the derived tensor product in quasi-
smooth affine schemes.

It is important to note that the derived intersection is only well-defined up to quasi-isomorphism.

Remark 23. In our examples, all coordinate rings and ideals are actually localized at the origin since we are
working with regular local rings. For convenience, we omit the localization notation in this section, and all
the computations are still correct. For example R = k[x, y] means R = k[x, y](x,y) in this section. Also, k
will always be a field of characteristic 0.

Remark 24. Even though R/I ∼= R/I by the third isomorphism theorem of rings, we will use R/I as our
notation for clarity of context.

4.1. Computations of derived self-intersections. In this subsection, we will focus on self-intersections
of quasi-smooth affine schemes, i.e., the case where I = J , similar to [AC12].

Example 25. Let R = k[x, y], A = (xy), and I = (x). The Tate resolution of R/I is the polynomial dg
algebra R[e, ε], where |e| = −1, |ε| = −2, d(e) = x, and d(ε) = ye. Thus, we obtain that

R/I ⊗L
R
R/I ∼= R[e, ε]⊗R R/I ∼= R/I[e, ε].
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Note R/I ∼= k[y], so d(e) = 0 and d(ε) = ye in R/I. We may write R/I[e, ε] as

· · · 0−→ R/Iε2 d−→ R/Ieε
0−→ R/Iε

d−→ R/Ie
0−→ R/I.

Since
d(εn) = (dε)εn−1 + ε(dεn−1) = nyeεn−1,

and
d(eεn) = (de)εn − e(dεn) = 0,

we could rewrite the complex as

· · · 0−→ R/I
·2y−−→ R/I

0−→ R/I
·y−→ R/I

0−→ R/I.

In other words,

R/I ⊗L
R
R/I ∼= Symk[y](k[y]

·y−→ k[y]).

Example 26. Let R = k[x, y], A = (xy), and I = (x, y). The Tate resolution of R/I is the polynomial dg
algebra R[e1, e2, ε], where |e1| = −1, |e2| = −1, |ε| = −2, d(e1) = x, d(e2) = y, and d(ε) = ye1. Thus, we
obtain that

R/I ⊗L
R
R/I ∼= R[e1, e2, ε]⊗R R/I ∼= R/I[e1, e2, ε].

Note R/I ∼= k, so d(e1) = 0, d(e2) = 0, and d(ε) = 0 in R/I. Therefore the derived tensor product
R/I ⊗L

R
R/I is quasi-isomorphic to the chain complex

· · · 0−→ R/Iε2 ⊕R/Ie1e2ε
0−→ R/Ie1ε⊕R/Ie2ε

0−→ R/Iε⊕R/Ie1e2
0−→ R/Ie1 ⊕R/Ie2

0−→ R/I.

In other words,
R/I ⊗L

R
R/I ∼= Symk(k2[1]⊕ k[2]).

4.2. Computations of general derived intersections. In this subsection, we will focus on general derived
intersections. Note that resolving R/I first and then tensor with R/J will give us the same (up to quasi-
isomorphism) result as resolving R/J first and then tensoring with R/I.

Example 27. Let R = k[x, y], A = (xy), I = (x), and J = (y). From example 19, the Tate resolution of
R/I is the polynomial dg algebra R[e, ε], where |e| = −1, |ε| = −2, d(e) = x, and d(ε) = ye. Thus, we
obtain that

R/I ⊗L
R
R/J ∼= R[e, ε]⊗R R/J ∼= R/J [e, ε].

Note R/J ∼= k[x], so d(e) = x and d(ε) = 0 in R/J . We may write R/J [e, ε] as

· · · d−→ R/Jε2 0−→ R/Jeε
d−→ R/Jε

0−→ R/Je
d−→ R/J.

Since
d(εn) = (dε)εn−1 + ε(dεn−1) = 0,

and
d(eεn) = (de)εn − e(dεn) = xεn,

we could rewrite the complex as

· · · ·x−→ R/J
0−→ R/J

·x−→ R/J
0−→ R/J

·x−→ R/J.

In other words,

R/I ⊗L
R
R/J ∼= Symk[x](k[x]

·x−→ k[x]).

Example 28. Let R = k[x, y], A = (y(y − x2 − 1)), I = (y − x2 − 1), and J = (y). The Tate resolution of
R/I is the polynomial dg algebra R[e, ε], where |e| = −1, |ε| = −2, d(e) = y − x2 − 1 and d(ε) = ye. Thus,
we obtain that

R/I ⊗L
R
R/J ∼= R[e, ε]⊗R R/J ∼= R/J [e, ε].

Note R/J ∼= k[x], so d(e) = x2 + 1 and d(ε) = 0 in R/J . We may write R/J [e, ε] as

· · · d−→ R/Jε2 0−→ R/Jeε
d−→ R/Jε

0−→ R/Je
d−→ R/J.

Since
d(εn) = (dε)εn−1 + ε(dεn−1) = 0,
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and

d(eεn) = (de)εn − e(dεn) = (x2 + 1)εn,

we could rewrite the complex as

· · · ·(x
2+1)−−−−−→ R/J

0−→ R/J
·(x2+1)−−−−−→ R/J

0−→ R/J
·(x2+1)−−−−−→ R/J.

In other words,

R/I ⊗L
R
R/J ∼= Symk[x](k[x]

·(x2+1)−−−−−→ k[x]).

Example 29. Let R = k[x, y, z], A = (xyz), I = (xy), and J = (xz). The Tate resolution of R/I is the
polynomial dg algebra R[e, ε], where |e| = −1 , |ε| = −2, d(e) = xy and d(ε) = ze. Thus, we obtain that

R/I ⊗L
R
R/J ∼= R[e, ε]⊗R R/J ∼= R/J [e, ε].

We may write R/J [e, ε] as

· · · d−→ R/Jε2 d−→ R/Jeε
d−→ R/Jε

d−→ R/Je
d−→ R/J.

Since

d(εn) = (dε)εn−1 + ε(dεn−1) = nzeεn−1,

and

d(eεn) = (de)εn − e(dεn) = xyεn,

we could rewrite the complex as

· · · ·xy−−→ R/J
·2z−−→ R/J

·xy−−→ R/J
·z−→ R/J

·xy−−→ R/J.

5. Kähler differentials and the cotangent complex

5.1. Kähler differentials. Given a k-algebra R, the module of of Kähler differentials ΩR/k corresponds to
the cotangent sheaf on Spec R. Its elements can be interpreted as “infinitesimal transformations”, and in
particular, elements of the dual of ΩR/k can profitably be interpreted as vectors fields on the variety Spec R.

Definition 30. Let R be a k-algebra. We define the module of Kähler differentials of R over k, written
ΩR/k, to be the R-module generated by the set {d(f) | f ∈ R} subject to the relations

d(r1r2) = r1d(r2) + r2d(r1) (Leibniz rule)

d(c1r1 + c2r2) = c1d(r1) + c2d(r2) (k-linearity)

for all r1, r2 ∈ R and c1, c2 ∈ k.

We now list several useful properties of Kähler differentials, the proofs of which can be found in [Eis95,
Chapter 16].

Given an R-module M , we let Derk(R,M) be the set of all k-linear maps R → M satisfying the Leibniz
rule. Elements of Derk(R,M) are called k-linear derivations. We then have the following isomorphism:

Derk(R,M) ∼= HomR(ΩR/k,M).

Proposition 31. If R = k[x1, . . . , xr], then

ΩR/k =

r⊕
i=1

Rdxi.

Proposition 32. If k → R is a surjective map, then ΩR/k = 0.

Proposition 33. Given two ring homomorphisms R → S → T , we have the following right exact sequence
of T -modules:

ΩS/R ⊗S T → ΩT/R → ΩT/S → 0.

If T = S/I for some ideal I, then ΩT/S = 0 and we have the following right exact sequence (known as the
conormal sequence):

I/I2 [f ]7→df⊗1−−−−−−→ ΩS/R ⊗S T → ΩT/R → 0.



8 LIN AN, FELIPE CASTELLANO-MACÍAS, AND ROHAN JOSHI

Observe that the definition of the Kähler differentials ΩR/k also makes sense when R is a dg algebra. In
this case, the Kähler differentials become a dg module. Roughly speaking, the cotangent complex is the
module resulting from this derived version of Kähler differentials.

5.2. The cotangent complex. A natural question to ask is whether the right exact sequences of the
previous proposition can be extended to the left. In fact it can, and the answer is provided by Illusie’s
theory of the cotangent complex [Ill71], [Ill72] and the associated André-Quillen homology functors. The
cotangent complex is a “homotopical” construction and is defined using simplicial machinery. However, the
Dold-Kan correspondence provides an equivalence of categories between simplicial commutative rings and
dg algebras over Q. Thus we can use the machinery we have been developing so far to provide a direct
construction of the cotangent complex.

For further details on the construction of the cotangent complex as a dg algebra, see [Man].

Definition 34. A dg k-algebra is semifree if the underlying graded algebra is a polynomial algebra over k.

Definition 35. A k-semifree resolution of a dg k-algebra A is a surjective quasi-isomorphism R→ A, where
R is a semifree dg k-algebra.

If R is a dg k-algebra, then the Kähler differentials ΩR/k become a dg R-module, where the grading is
induced by the grading on R.

Definition 36. Let R and A be dg k-algebras, and let R → A be a k-semifree resolution. The cotangent
complex LA/k is the dg A-module defined as

LA/k := ΩR/k ⊗R A.

Proposition 37. If R is Noetherian and A = R/I, where I is generated by a regular sequence, then
LB/A ∼= I/I2[1] and I/I2 is a projective module.

Proof. [Qui70, Corollary 6.14] �

Proposition 38. Let A → B → C be a sequence of maps of dg k-algebras. We then have the following
cofiber sequence or canonical distinguished triangle of dg C-modules:

LB/A ⊗LB C → LC/A → LC/B → LB/A ⊗LB C[1].

Moreover, this cofiber sequence implies a long exact sequence in André-Quillen homology.

Proof. [Sta18, Tag 08QX]. �

As mentioned earlier, the cotangent complex can also be defined using simplicial methods by the commu-
tative diagram of categories below, where ' denotes Quillen-equivalence of categories.

scRingk sModR

cdgAlgk ChR

L

' if Q⊆k by monoidal Dold-Kan ' by Dold-Kan

L

6. Derived intersections and symmetric algebras

In [ACH14], the authors proved that smooth derived intersections in local rings can be written as sym-
metric algebras and are formal over the corresponding smooth classical intersection. We now explore in what
situations we can write a derived intersection in a quasi-smooth affine scheme as a symmetric algebra in a
meaningful way, that is, when the derived intersection is SpecX SymX C for some scheme X and some finite
complex of locally free sheaves C. As shown in the previous section, where we calculated various examples
of quasi-smooth derived intersections, we notice that this is not always true in the quasi-smooth case. For
instance, in Example 29 the derived intersection could not be written as a symmetric algebra in a meaningful
way. However, Theorems 1 and 2 show two situations where this is possible; in this section we will prove
these two theorems.

Throughout this section we inherit the notations from Section 4. In addition, we use the notation
R {t1, . . . , tn} as a shorthand for Rt1 ⊕ · · · ⊕Rtn.

Theorem 39. Suppose I ⊂ J , then R/I ⊗L
R
R/J ∼= SymR/J LY/k.

https://stacks.math.columbia.edu/tag/08QX
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Proof. Let A = (a1, . . . ar) and I = (f1, . . . fn) be regular ideals such that A ⊂ I. Write aj =
∑n
i=1 cjifi,

where cji ∈ R. By Theorem 21, the polynomial dg algebra

R[e1, . . . en, ε1, . . . εr],

where |ei| = −1, |εj | = −2, d(ei) = fi and d(εj) =
∑n
i=1 cjiei is a resolution of R/I. Thus, we obtain that

R/I ⊗L
R
R/J ∼= R[e1, . . . en, ε1, . . . εr]⊗R R/J ∼= R/J [e1, . . . en, ε1, . . . εr].

Because I ⊂ J , we have that f1, · · · , fn ∈ J . Therefore d(ei) = 0 in R/J for all i. We may therefore write
R/J [e1, . . . en, ε1, . . . εr] as

· · · → R/J {ε1, . . . , εr} ⊕
⊕
i<j

R/J {eiej} → R/J {e1, . . . , en}
0−→ R/J.

Hence we obtain that

R/I ⊗L
R
R/J ∼= SymR/J

{
R/Jε1 ⊕ · · · ⊕R/Jεr

T−→ R/Je1 ⊕ · · · ⊕R/Jen
}
,

where the map T is the matrix (cji). On the other hand, we have that the cotangent complex LY/k is the

dg R/J-module

R/J {dε1, . . . , dεr} → R/J {de1, . . . , den} ,
where d(dεj) =

∑n
i=1 cjidei. Therefore R/I ⊗L

R
R/J ∼= SymR/J LY/k. �

Proposition 40. The map R/J {e1, . . . , en}
d−→ R/J is zero if and only if I ⊂ J .

Proof. The map d is zero if and only if d(ei) = 0 in R/J for all i, which precisely means fi ∈ J for i. Since
I = (f1, . . . , fn), this is same as saying I ⊂ J . �

Theorem 41. Suppose A ⊂ IJ . Let A = (a1, . . . ar) and I = (f1, . . . , fn), then R/I ⊗L
R
R/J ∼= SymR̃ R̃

r[2],

where R̃ is the dg algebra R/J [e1, . . . , en] with |ei| = −1 and with differential d(ei) = fi.

Proof. Under the same setting of Theorem 39, we have

R/I ⊗L
R
R/J ∼= R[e1, . . . en, ε1, . . . εr]⊗R R/J ∼= R/J [e1, . . . en, ε1, . . . εr].

where |ei| = −1, |εj | = −2, d(ei) = fi and d(εj) =
∑n
i=1 cjiei. Since A ⊂ IJ , we are able to choose cji such

that cji ∈ J , so that d(εj) = 0 in R/J for all j. We may therefore write R/J [e1, . . . en, ε1, . . . εr] as

· · · → R/J {ε1, . . . , εr} ⊕
⊕
i<j

R/Jeiej
0−→ R/J {e1, . . . , en} → R/J.

If we ignore the εi’s in the above complex, we obtain a copy of R̃. Since d(εi) = 0, we can write the above

complex as SymR̃ R̃[η1, . . . , ηr], where |ηi| = −2 and the ηi’s represent the εi’s (there is no differential on

the ηi’s). Therefore R/I ⊗L
R
R/J ∼= SymR̃ R̃

r[2]. �

Proposition 42. The map R/J {ε1, . . . , εr}
d−→ R/J {e1, . . . , en} is zero if and only if A ⊂ IJ .

Proof. The “if” part is proven in Theorem 41. Suppose d(εj) = 0 in R/J for all j, then
∑n
i=1 cjiei = 0 in

R/J for all j. But e1, . . . , en are variables, so cji = 0 in R/J for all i and j, which means aj =
∑n
i=1 cjifi

where fi ∈ I and cji ∈ J for all i and j. Since A = (a1, · · · , ar), we obtain that A ⊂ IJ . �

7. Derived intersections and cotangent complexes

In this section we study the relationship between derived intersections in quasi-smooth affine schemes and
cotangent complexes. We still use the same notations as in Section 4, and work in the quasi-smooth affine
case. One may ask: can we always find the appropriate W ′ and E in different situations (if possible) such
that the following two statements are equivalent?

(1) X ×LS Y ∼= SymW ′ E.
(2) LX/S ⊗OX

OW → LY/W is a surjective splitting, that is, LY/W is isomorphic to a direct summand
of LX/S ⊗OX

OW .
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Here W ′ is a non-trivial cochain complex, meaning W ′ contains at least one term but is not the whole
complex. In other words, condition (1) requires the derived intersection to be a symmetric algebra in a
meaningful way.

The smooth version of this problem is studied in [ACH14], in which case one can just let W ′ = W and both
statements are always true. However, there are more obstructions in the quasi-smooth case. For example,
in order to have a systematic way to calculate the cotangent complex LY/W , we would like to use Tate

resolution to resolve R/I + J as an R/J-module as in Theorem 21. However, this requires I to be an ideal
generated by a regular sequence in R/J , or equivalently, we need I to be an ideal generated by a regular
sequence in R/J . This is not always true, but we will focus on the cases where this is true in order to use
Tate resolutions.

First we state two theorems:

Theorem 43. If I ⊂ J , then both statements are always true.

Proof. Statement (1) is true by Theorem 39, and statement (2) is true because Y = W , so LY/W = 0, and
thus the map of cotangent complexes always splits. �

Theorem 44. Suppose A ⊂ IJ and the image of I in R/J is generated by a regular sequence, then both
statements are always true.

Proof. Statement (1) is true by Theorem 41. To prove statement (2), first notice that

LX/S ⊗OX
OW =

R/I + J{dε1, . . . , dεr}

R/I + J{de1, . . . , den}

0 ,

where the map is zero by Proposition 42. Also, since the image of I in R/J is generated by a regular
sequence, the image of I in R/J is generated by a regular sequence. Let R′ = R/J , then R′ ∼= R/J , which
a regular local ring by assumption. Then we can use Koszul resolution to resolve R′/I as an R′-module.
Because Spec R′ = Y and Spec R′/I = W , this allows us to compute LY/W , which contains only degree one

term, namely LY/W = R/I + J{de′1, . . . , de′m}, where m ≤ n since I cannot have more generators in R/J

than in R. Therefore LX/S ⊗OX
OW → LY/W is

R/I + J{dε1, . . . , dεr} 0

R/I + J{de1, . . . , den} R/I + J{de′1, . . . , de′m}

0

π

where the map π is given by the image of generators of I in R/J . This is a surjective splitting, so statement
(2) is also true. �

The following example illustrates Theorem 44:

Example 45. Let R = k[x, y], A = (xy), I = (x), and J = (y). By Example 27,

R/I ⊗L
R
R/J ∼= Symk[x](k[x]

·x−→ k[x]),

so we can take W ′ = R/J ∼= k[x] and (1) is satisfied. After resolving R/I using the Tate resolution, we have
that d(e) = x = 0 and d(ε) = ye. Therefore

LX/S =

R/I{dε}

R/I{de}

yde .
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Note that ye = 0 after pulling back by R/J , so we obtain that

LX/S ⊗OX
OW =

R/I + J{dε}

R/I + J{de}

0 .

Since W ∼= k and Y ∼= k[x], we can use Koszul resolution to compute LY/W , which contains only degree one

term, namely LY/W = R/I + J{de′}. Therefore LX/S ⊗OX
OW → LY/W is

R/I + J{dε} 0

R/I + J{de} R/I + J{de′}

0

id

which is a surjective splitting. Hence (2) is also satisfied.

However, besides the cases which fall into the above two theorems, the relationship between (1) and (2)
is not clear in general. In the below example, both (1) and (2) are not easy to determine.

Example 46. Let R = k[x, y, z], A = (xyz), I = (xy), and J = (xz). By Example 29, there is no obvious
way to write R/I ⊗L

R
R/J as a non-trivial symmetric algebra. However, since I is not an ideal generated by

a regular sequence in R/J , we couldn’t use Tate resolution, so LY/W is also hard to calculate.

Moreover, observe that statement (1) is symmetric with respect to X and Y , but statement (2) is not.
This leads us to the following counterexample, which shows that (1) and (2) are not equivalent.

Example 47. R = k[x, y], A = (xy2), I = (x), J = (xy). Since J ⊂ I, by Theorem 39,

R/I ⊗L
R
R/J ∼= SymR/I LX/k,

that is, condition (1) is satisfied. We compute LX/S ⊗OX
OW → LY/W to be

R/I + J{dε} R/I + J{dε′}

R/I + J{de} R/I + J{de′}

y

y2 y

id

which does not split. On the other hand, we can compute LY/S ⊗OY
OW → LX/W to be

R/I + J{dε} 0

R/I + J{de} 0

y2

which splits (observe that LX/W = 0 because X = W ). Note that this direction satisfies Theorem 43.

Roughly speaking, we have that the cotangent complex generally does not capture all the information
about the map R/J {ei} → R/J .

8. Cohomology of derived self-intersections

Taking the cohomology of a dg algebra loses important information (like the algebra structure), but
nonetheless it is a useful invariant. The cohomology is well-defined, while the derived intersection is only
defined up to quasi-isomorphism.

What follows are some fairly computational results on the cohomology of derived intersections, in the case
that A is a principal ideal.

Theorem 48. Let S = R/I for convenience. Then if A = (f0), I = (f1, . . . fn), and f0 =
∑
cifi, and

(c1, . . . cn) = 1, Hi(S ⊗L
R
S) ∼= Sk, where k =

(
n−1
i

)
.
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Proof. As proved in Theorem 39, the derived-self intersection is the symmetric algebra of the cotangent
complex B → C, where B ∼= S and C ∼= Sn. Each term in the sequence is thus a direct sum of some
SymiB ⊗ ∧jC, but Symi S ∼= S so they are just ∧jS. In fact, the complex breaks down as a direct sum of
complexes as follows:

∧0C ∧1C

∧0C ∧1C ∧2C

∧0C ∧1C ∧2C ∧3C

...

∧0C ∧1C ∧2C · · · ∧nC

As we can see, what we have are (truncated) copies of the complex ∧0C → · · · , shifted by two degrees
to the left, and each containing on more term than the one below it. Since ∧n+1C = 0, at some point the
complexes all become ∧0C → · · · → ∧nC.

The differential is a 7→ a∧(c1e1 . . . c1en), where e1, . . . , en is the basis of C. So it is the dual Koszul complex
K∗(c1, . . . cn)! (cf [Eis95, Ch.17]) According to a theorem in [Ser00], Koszul (co)homology is annihilated by
(c1, . . . cn). Since we have assumed (c1, . . . , cn) = 1, the homology must all be zero; each complex ∧0C →
· · · ∧n C is exact. Thus we are left with only the complexes ∧0C → ∧1C → · · · → ∧iC for i < n. For these
complexes, the only homology can be at the last term. It suffices to find the cokernels ∧iC/(ker(∧i → ∧i+1).
It is easy to see that this is isomorphic to ∧iC ′, where C ′ ∼= Sn−1. Since ∧i(Sn−1) ∼= Sk where k =

(
n−1
i

)
,

we are done. �

Theorem 49. Let S = R/I for convenience. Then assume A = (f0), I = (f1, . . . fn), and f0 =
∑
cifi, and

(the classes of) c1, . . . cn are a regular sequence (in S). Then the derived intersection is

Hi(S ⊗L
R
S) ∼= Sk ⊕

{
S/(c1, . . . cn) if i ≥ n and i is even

0 otherwise

where k =
(
n−1
i

)
.

Proof. Let’s first focus on the “full length” complexes ∧0C → · · · → ∧nC. Since c1, . . . , cn is a regular
sequence, Koszul homology vanishes everywhere except at the end (at ∧nC), where it is S/(c1, . . . , cn), by
Theorem 18. Thus we have many copies of S/(c1, . . . , cn), spaced out by two. They end where we have the
final occurrence of ∧n.

For the shorter complexes, we end up getting the same terms of ∧iC ′, via a direct computation. These
form the contribution of Sk to the cohomology of the derived intersection. �

9. A commutative algebra theorem

In this section we state and prove a commutative algebra theorem which helps us understand the assump-
tions of the theorems in the previous section better.

Theorem 50. Let A = (f0), I = (f1, . . . fn) where {f1, . . . , fn} is a minimal generating set of I. Assume I
is the maximal ideal of R , then there exists some c1, . . . , cn ∈ R such that f0 =

∑
cifi and that c1, . . . , cn

satisfy one of the three following cases:

(1) ci = 0 for some i.
(2) ci is a unit for some i.
(3) c1, . . . , cn is a regular sequence.

Furthermore, if f0 is not contained in any ideal generated by a proper sub-sequence of f1, . . . , fn, then we
may let c1, . . . , cn satisfy either case (2) or case (3).

Remark 51. Cases (2) and (3) correspond to Theorems 48 and 49, respectively.
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Lemma 52. Each fi is prime in R.

Proof of Lemma 52. Note that any regular local ring is a UFD, so we just need to prove each fi is irreducible
in R. Suppose not, without loss of generality assume f1 is not irreducible, let f1 = f ′1f

′′
1 where f ′1, f

′′
1 are not

units. Then (f ′1, f2, . . . , fn) doesn’t contain units and I ⊂ (f ′1, f2, . . . , fn). Therefore I = (f ′1, f2, . . . , fn). So
{f ′1, f2, . . . , fn} is also a minimal generating set of I. Because I is generated by some regular sequence and
R is Cohen-Macaulay, we have that f ′1, f2, . . . , fn is a regular sequence. Write f ′1 = f1r1 + · · ·+ fnrn where
ri ∈ R. Because f1 ∈ (f ′1), f2r2 + · · · + fnrn ∈ (f ′1), so by regularity r2, . . . , rn = 0. Therefore f ′1 = f1r1,
which is a contradiction. Thus each fi is irreducible in R. �

Proof of Theorem 50. The case n = 1 is trivial so let n ≥ 2. Write f0 =
∑
difi for some di ∈ R. If d1, . . . , dn

is a regular sequence, let ci = di and then c1, . . . , cn satisfy case (3). Also, if there exists some i where di = 0,
let ci = di and then c1, . . . , cn satisfy case (1).

Suppose d1, . . . , dn is not a regular sequence and d1, . . . , dn 6= 0, then dn is a zero-divisor inR/(d1, . . . , dn−1),
so dn|d1 · · · dn−1. If fi - dn for each i, then dn ∈ R− I. Since I is maximal, dn ∈ R− I implies dn is a unit.
Then let ci = di and c1, . . . , cn satisfy case (2).

Now suppose dn 6= 0 is also not a unit, then there exists fj such that fj |dn. If j = n, then dn|d1 · · · dn−1

implies fn|d1 · · · dn−1. By Lemma 50, we have that fn is prime, so fn|dk for some 1 ≤ k ≤ n − 1, say
dk = rfn. Then f0 =

∑
difi = (

∑n
i=1,i6=k,n difi) + dkfk + dnfn = (

∑n
i=1,i6=k,n difi) + rfnfk + dnfn =

(
∑n
i=1,i6=k,n difi) + fn(rfk + dn). Let ci = di when i 6= k, n, cn = rfk + dn, ck = 0, then f0 =

∑
cifi and

c1, . . . , cn satisfy case (1). If j 6= n, then let dn = rfj . Similarly f0 =
∑
difi = (

∑n
i=1,i6=j,n difi) + djfj +

dnfn = (
∑n
i=1,i6=j,n difi) + djfj + rfjfn = (

∑n
i=1,i6=k,n difi) + fj(dj + rfn). Let ci = di when i 6= j, n,

cj = dj + rfn, cn = 0, then f0 =
∑
cifi and c1, . . . , cn satisfy case (1). �

10. Further questions: derived fixed points

As a particular case of derived intersections, we may study the derived fixed points of an affine scheme
under an automorphism.

Let X be an affine scheme over k, and let ϕ be an automorphism of X. Both the diagonal of X, denoted
by ∆X , and the graph of f , written as Γϕ, are closed subschemes of the fiber product X ×k X. The derived
fixed points of X under ϕ are defined to be the derived fiber product

Xϕ := ∆X ×LX×kX
Γϕ.

In other words, the derived fixed points are defined to be the derived version of the pullback diagram below.

Xϕ Γϕ

∆X X ×k X

Assume thatX = Spec R/I is a quasi-smooth affine scheme. We have that both ∆X and Γϕ are isomorphic

to X, so ∆X = Spec R/I and Γϕ = Spec R/I.
From the algebraic point of view, we want to look at the derived tensor product corresponding to the

pushout diagram

R/I ⊗L
R/I⊗kR/I

R/I R/I

R/I R/I ⊗k R/I

Γ

∆

where ∆ : r ⊗ s 7→ rs and Γ : r ⊗ s 7→ rϕ(s).
To compute this derived tensor product, we may resolve the ring R/I corresponding to the diagonal as

an R/I ⊗k R/I-module. In this case, we have that

R/I ∼=
(
R/I ⊗k R/I

)
/M,

where M is the kernel of the multiplication map R/I ⊗k R/I → R/I. In particular, M is generated by all
elements of the form r ⊗ 1 − 1 ⊗ r, where r ∈ R/I. Moreover, we can choose generators of M by using
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Nakayama’s lemma. Therefore, we may apply the Koszul-Tate resolution on
(
R/I ⊗k R/I

)
/M to resolve

R/I as an R/I ⊗k R/I-module.

Question 53. Let X be quasi-smooth. When can Xϕ be written as a symmetric algebra?
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